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Finite-difference, time-domain~FDTD! calculations are typically performed with partial differential
equations that are first order in time. Equation sets appropriate for FDTD calculations in a moving
inhomogeneous medium~with an emphasis on the atmosphere! are derived and discussed in this
paper. Two candidate equation sets, both derived from linearized equations of fluid dynamics, are
proposed. The first, which contains three coupled equations for the sound pressure, vector acoustic
velocity, and acoustic density, is obtained without any approximations. The second, which contains
two coupled equations for the sound pressure and vector acoustic velocity, is derived by ignoring
terms proportional to the divergence of the medium velocity and the gradient of the ambient
pressure. It is shown that the second set has the same or a wider range of applicability than equations
for the sound pressure that have been previously used for analytical and numerical studies of sound
propagation in a moving atmosphere. Practical FDTD implementation of the second set of equations
is discussed. Results show good agreement with theoretical predictions of the sound pressure due to
a point monochromatic source in a uniform, high Mach number flow and with Fast Field Program
calculations of sound propagation in a stratified moving atmosphere. ©2005 Acoustical Society of
America. @DOI: 10.1121/1.1841531#
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I. INTRODUCTION

Finite-difference, time-domain~FDTD! techniques have
drawn substantial interest recently due to their ability
readily handle complicated phenomena in outdoor so
propagation such as scattering from buildings and trees,
namic turbulence fields, complex moving source distrib
tions, and propagation of transient signals.1–8 These phenom-
ena are difficult to handle with frequency–doma
techniques that are currently widely used, such as parab
equation approximations and the Fast Field Program~FFP!.
FDTD techniques typically solve coupled sets of partial d
ferential equations that are first order in time. In this rega
they are a departure from methodologies such as the p
bolic approximation, which solve a single equation for t
sound pressure that is second order in time. Many s
single equations for the sound pressure in a moving inho
geneous medium are known in the literature~see Refs. 9–14

a!Portions of this work were presented in V. E. Ostashev, L. Liu, D.
Wilson, M. L. Moran, D. F. Aldridge, and D. Marlin, ‘‘Starting equation
for direct numerical simulation of sound propagation in the atmosphe
Proceedings of the 10th International Symposium on Long Range S
Propagation, Grenoble, France, Sept. 2002, pp. 73–81.
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and references therein!. Although these equations were ob
tained with different assumptions and/or approximations,
contain second- or higher-order derivatives of the sou
pressure with respect to time, and are therefore not amen
to first-order FDTD techniques. Our main goal in the pres
paper is to derive equation sets that are appropriate as s
ing equations in FDTD simulations of sound propagation i
moving inhomogeneous atmosphere and to study the ra
of applicability of these sets.

The most general possible approach to sound propa
tion in a moving inhomogeneous medium would be based
a direct solution of the complete set of linearized equatio
of fluid dynamics,9–11,15 which are first-order partial differ-
ential equations. Although this set could be used as star
equations for FDTD codes, even with modern computers
too involved to be practical. Furthermore, this set conta
the ambient pressure and entropy, which are not usually c
sidered in studies of sound propagation in the atmosph
Therefore, it is worthwhile to find simplified equation se
for use in FDTD calculations.

In the present paper, the complete set of linearized eq
tions of fluid dynamics in a moving inhomogeneous mediu
is reduced to two simpler sets that are first order in time a

.

,’’
nd
50303/15/$22.50 © 2005 Acoustical Society of America



in
c
i-
o

ve
be

i

n
at
t
s

re
n
th
th

l a
o
l-

T
in
t o
fo
in
e

is
o
f
g
th
a

n
n
r
u

. I
s
o

.

For
om-

il

e
y,

tain

s

d

pa-
ne

nd
py

en

e-
le

ient
r
hey

id
amenable to FDTD implementation. The first set conta
three coupled equations involving the sound pressure, ve
acoustic~particle! velocity, and acoustic density. No approx
mations are made in deriving this set. The second set c
tains two coupled equations for the sound pressure and
tor acoustic velocity. Although the second set descri
sound propagation only approximately, the assumptions
volved in deriving the second set are quite reasonable
atmospheric acoustics: Terms proportional to the diverge
of the medium velocity and the gradient of the ambient
mospheric pressure are ignored. To better understand
range of applicability of the second set, we compare the
with equations for the sound pressure that have been p
ously used in analytical and numerical studies of sou
propagation in a moving atmosphere. It is shown that
second set has the same or a wider range of applicability
these equations for the sound pressure.

Furthermore in the present paper, a basic numerica
gorithm for solving the second set of equations in tw
dimensional~2-D! moving inhomogeneous media is deve
oped. Issues related to the finite-difference approximation
the spatial and temporal derivatives are discussed. FD
solutions are obtained for a homogenous uniformly mov
medium and for a stratified moving atmosphere. The firs
these solutions is compared with an analytical formula
the sound pressure due to a point monochromatic source
uniformly moving medium. The second solution is compar
with predictions from before FFP.

Although the explicit emphasis of the discussion in th
paper is on sound propagation in a moving inhomogene
atmosphere, most of the derived equations are also valid
a general case of sound propagation in a moving inhomo
neous medium with an arbitrary equation of state, e.g., in
ocean with currents. Equations presented in the paper
also compared with those known in aeroacoustics.

The paper is organized as follows. In Sec. II, we co
sider the complete set of equations of fluid dynamics a
their linearization. In Sec. III, the linearized equations a
reduced to the set of three coupled equations for the so
pressure, acoustic velocity, and acoustic density. In Sec
we consider the set of two coupled equations for the acou
pressure and acoustic velocity. Numerical implementation
this set is considered in Sec. V.

II. EQUATIONS OF FLUID DYNAMICS AND THEIR
LINEARIZATION

Let P̃(R,t) be the pressure,%̃(R,t) the density,ṽ(R,t)
the velocity vector, andS̃(R,t) the entropy in a medium
Here, R5(x,y,z) are the Cartesian coordinates, andt is
time. These functions satisfy a complete set of fluid dynam
equations~e.g. Ref. 16!:

S ]

]t
1 ṽ"“ D ṽ1

“ P̃

%̃
2g5F/%̃, ~1!

S ]

]t
1 ṽ"“ D %̃1%̃“"ṽ5%̃Q, ~2!
504 J. Acoust. Soc. Am., Vol. 117, No. 2, February 2005
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S ]

]t
1 ṽ"“ D S̃50, ~3!

P̃5 P̃~ %̃,S̃!. ~4!

In Eqs.~1!–~4!, “5(]/]x,]/]y,]/]z), g5(0,0,g) is the ac-
celeration due to gravity, andF and Q characterize a force
acting on the medium and a mass source, respectively.
simplicity, we do not consider the case when a passive c
ponent is dissolved in a medium~e.g., water vapor in the dry
air, or salt in water!. This case is considered in deta
elsewhere.9,17

If a sound wave propagates in a medium, in Eqs.~1!–~4!

P̃, %̃, ṽ, and S̃ can be expressed in the following form:P̃

5P1p, %̃5%1h, ṽ5v1w, and S̃5S1s. Here,P, %, v,
andS are the ambient values~i.e., the values in the absenc
of a sound wave! of the pressure, density, medium velocit
and entropy in a medium, andp, h, w, ands are their fluc-
tuations due to a propagating sound wave. In order to ob
equations for a sound wave, Eqs.~1!–~4! are linearized with
respect top, h, w, and s. Assuming that a sound wave i
generated by the mass sourceQ and/or the forceF and in-
troducing the full derivative with respect to timed/dt
5]/]t1v"“, we have

dw

dt
1~w"“ !v1

“p

%
2

h“P

%2 5F/%, ~5!

dh

dt
1~w"“ !%1%“"w1h“"v5%Q, ~6!

ds

dt
1~w"“ !S50, ~7!

p5hc21hs. ~8!

Here, c5A]P(%,S)/]% is the adiabatic sound speed, an
the parameterh is given byh5]P(%,S)/]S. The set of Eqs.
~5!–~8! provides a most general description of sound pro
gation in a moving inhomogeneous medium with only o
component. In order to calculatep, h, w, ands, one needs to
know the ambient quantitiesc, %, v, P, S, andh. Note that
Eqs. ~5!–~8! describe the propagation of both acoustic a
internal gravity waves, as well as vorticity and entro
waves~e.g., Ref. 18!.

Equations~5!–~8! were derived for the first time by
Blokhintzev in 1946.17 Since then, these equations have be
widely used in studies of sound propagation~e.g., Refs.
9–11!. In the general case of a moving inhomogeneous m
dium, Eqs.~5!–~8! cannot be exactly reduced to a sing
equation for the sound pressurep. In the literature, Eqs.
~5!–~8! have been reduced to equations forp, making use of
different approximations or assumptions about the amb
medium. These equations forp were subsequently used fo
analytical and numerical studies of sound propagation. T
are discussed in Sec. IV. Note that the equations forp known
in the literature contain the following ambient quantities:c,
%, andv. On the other hand, the linearized equations of flu
dynamics, Eqs.~5!–~8!, contain not onlyc, %, and v, but
Ostashev et al.: Moving media finite difference time domain equations
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alsoP, S, andh. This fact indicates that the effect ofP, S,
and h on sound propagation is probably small for most
problems considered so far in the literature.

The effect of medium motion on sound propagation
also studied in aeroacoustics, e.g., see Refs. 12, 19–24
references therein. In aeroacoustics, the starting equa
coincide with Eqs.~1!–~4! but might also include terms de
scribing viscosity and thermal conductivity in a medium. U
ing these equations of fluid dynamics, equations for so
waves are derived which have some similarities with E
~5!–~8!. For example, Eqs.~5!–~8! are equivalent to Eqs
~1.11! from Ref. 12, and Eq.~6! can be found in Refs. 19, 22
23. The main difference between Eqs.~5!–~8! and those in
aeroacoustics are sound sources. In atmospheric acousti
Eqs.~5!–~8! the sourcesF andQ are assumed to be know
and are loudspeakers, car engines, etc. In aeroacoustics,
sources have to be calculated and are those due to am
flow. Furthermore in some formulations in aeroacoustics,
left-hand side of Eq.~5! contains nonlinear terms.21–23 Note
that FDTD calculations are nowadays widely used in aer
coustics, e.g., Refs. 19, 20, 24.

Also note that in aeroacoustics it is sometimes assum
that the ambient medium is incompressible and/or isentro
i.e.,S5const. Generally, these assumptions are inapprop
for atmospheric acoustics. Indeed, sound waves can be
nificantly scattered by density fluctuations, e.g., see S
6.1.4 from Ref. 9. Furthermore, in a stratified atmospherS
depends on the height above the ground. The range of a
cability of the assumptionS5const~which is equivalent to
s50 or p5c2h) is studied in Sec. 2.2.4 from Ref. 9. For
stratified medium, this assumption is not applicable if t
scale of the ambient density variations is smaller than
sound wave length or if the ambient density noticea
changes with height.

III. SET OF THREE COUPLED EQUATIONS

A. Moving medium with an arbitrary equation of state

Applying the operator (]/]t1 ṽ"“) to both sides of Eq.
~4! and using Eq.~3!, we have

S ]

]t
1 ṽ"“ D P̃5 c̃2S ]

]t
1 ṽ"“ D %̃, ~9!

wherec̃25] P̃(%̃,S̃)/]%̃ differs from the square of the adia
batic sound speedc25]P(%,S)/]%. Using Eq.~2!, Eq. ~9!
can be written as

S ]

]t
1 ṽ"“ D P̃1 c̃2%̃“"ṽ5 c̃2%̃Q. ~10!

The next step is to linearize Eq.~10! to obtain an equation
for acoustic quantities. To do so we need to calculate
value of c̃25] P̃(%̃,S̃)/]%̃ to the first order in acoustic per
turbations. In this formula, we express%̃ and S̃ as the sums
%̃5%1h andS̃5S1s, decompose the functionP into Tay-
lor series, and keep the terms of the first order inh ands:
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c̃25
] P̃~ %̃,S̃!

]%̃
5

]

]%
P~%1h,S1s!

5
]

]% FP~%,S!1
]P~%,S!

]%
h1

]P~%,S!

]S
sG

5
]P~%,S!

]%
1

]2P~%,S!

]%2 h1
]2P~%,S!

]%]S
s. ~11!

The first term in the last line of this equation is equal toc2.
Denoting b5]2P(%,S)/]%2 and a5]2P(%,S)/]%]S, we
have c̃25c21bh1as5c21(c2)8. Here, (c2)85bh1as
are fluctuations in the squared sound speed due to a pr
gating sound wave. In this formula,s can be replaced by its
value from Eq.~8!: s5(p2c2h)/h. As a result, we obtain
the desired formula for fluctuations in the squared sou
speed: (c2)85(b2ac2/h)h1ap/h.

Now we can linearize Eq.~10!. In this equation, we
expressP̃, %̃, ṽ, and c̃2 as the sums:P̃5P1p, %̃5%1h,
ṽ5v1w, andc̃25c21(c2)8. Linearizing the resulting equa
tion with respect to acoustic quantities, we have

dp

dt
1%c2

“"w1w"“P1„c2h1%~c2!8…“"v5%c2Q.

~12!

In this equation, (c2)8 is replaced by its value obtaine
above. As a result, we arrive at the following equation
dp/dt:

dp

dt
1%c2

“"w1w"“P1$@%b1c2~12a%/h!#h

1~a%/h!p%“"v5%c2Q. ~13!

Equations~5!, ~6!, and ~13! comprise a desired set o
three coupled equations forp, w, and h. This set was ob-
tained from linearized equations of fluid dynamics, Eqs.~5!–
~8!, without any approximations. The set can be used as s
ing equations for FDTD simulations. In this set, one needs
know the following ambient quantities:c, %, v, P, a, b, and
h.

B. Set of three equations for an ideal gas

In most applications, the atmosphere can be conside
as an ideal gas. In this case, the equation of state reads~e.g.,
Refs. 9, 17! as

P5P0~%/%0!g exp@~g21!~S2S0!/Ra#, ~14!

whereg51.4 is the ratio of specific heats at constant pr
sure and constant volume,Ra is the gas constant for the ai
and the subscript 0 indicates reference values ofP, %, andS.
Using Eq.~14!, the sound speedc and the coefficientsa, b,
and h appearing in Eq.~13! can be calculated:c25gP/%,
a5g(g21)P/(%Ra), b5g(g21)P/%2, and h5(g
21)P/Ra . Substituting these values into Eq.~13!, we have

dp

dt
1%c2

“"w1w"“P1gp“"v5%c2Q. ~15!

A set of Eqs.~5!, ~6!, and ~15! is a closed set of three
coupled equations forp, w, andh for the case of an idea
505v et al.: Moving media finite difference time domain equations
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ics,
gas. To solve these equations, one needs to know the fol
ing ambient quantities:c, %, v, andP.

Let us compare Eqs.~5!, ~6!, and~15! with a closed set
of equations forp andw from Ref. 1; see Eqs.~12! and~13!
from that reference. The latter set was used in Refs. 1,
starting equations for FDTD simulations of outdoor sou
propagation. IfQ50, Eq.~15! in the present paper is esse
tially the same as Eq.~13! from Ref. 1.@Note that Eq.~15! is
also used in aeroacoustics, e.g., Ref. 19.# Furthermore for the
case of a nonabsorbing medium, Eq.~12! from Ref. 1 is
given by

dw

dt
1~w"“ !v1

“p

%
2

p“P

gP%
50. ~16!

Let us show that this equation is an approximate version
Eq. ~5! in the present paper. Indeed, in Eq.~5! we replaceh
by its value from Eq.~8!: h5(p2hs)/c2, and assume tha
s50. If F50, the resulting equation coincides with Eq.~16!.
Thus, for an ideal gas andF50 and Q50, Eqs.~12! and
~13! from Ref. 1 are equivalent to Eqs.~5! and ~15! in the
present paper ifs can be set to 0. The range of applicabili
of the approximations50 is considered above.

IV. SET OF TWO COUPLED EQUATIONS

A. Set of equations for p and w

In atmospheric acoustics, Eqs.~5! and ~13! can be sim-
plified sincev is always much less thanc. First, using Ref.
16, it can be shown that“"v;v3/(c2L), where L is the
length scale of variations in the density%. Therefore, in Eq.
~13! the term proportional to“"v can be ignored to orde
v2/c2. Second, in Eqs.~5! and~13! the terms proportional to
“P can also be ignored. Indeed, in a moving inhomo
neous atmosphere“P is of the orderv2/c2 so that these
terms can be ignored to orderv/c. Furthermore, in a strati
fied atmosphere,“P52g%, whereg is the acceleration due
to gravity. It is known that, in linearized equations of flu
dynamics, terms proportional tog are important for interna
gravity waves and can be omitted for acoustic waves.

With these approximations, Eqs.~13! and ~5! become

S ]

]t
1v"“ D p1%c2

“"w5%c2Q, ~17!

S ]

]t
1v"“ Dw1~w"“ !v1

“p

%
5F/%. ~18!

Equations~17! and ~18! comprise the desired closed set
two coupled equations forp andw. This set can also be use
in FDTD simulations of sound propagation in the atm
sphere. In order to solve this set, one needs to know
following ambient quantities:c, %, and v. These ambient
quantities appear in equations for the sound pressurep that
have been most often used for analytical and numerical s
ies of sound propagation in moving media. The set of E
~17! and ~18! is simpler than the set of three coupled equ
tions, Eqs.~5!, ~6!, and~13!, and does not contain the amb
ent quantitiesP, a, b, andh. It can be shown that Eqs.~17!
and ~18! describe the propagation of acoustic and vortic
waves but do not describe entropy or internal gravity wav
506 J. Acoust. Soc. Am., Vol. 117, No. 2, February 2005
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Equations~17! and ~18! were derived in Ref. 25@see
also Eqs.~2.68! and ~2.69! from Ref. 9# using a different
approach. In these references, Eqs.~17! and ~18! were de-
rived for the case of a moving inhomogeneous medium w
more than one component~e.g., humid air or salt water!.
Equations~17! and~18! are somewhat similar to the startin
equations in FDTD simulations used in Ref. 3; see Eqs.~10!
and ~12! from that reference. The last of these equatio
coincides with Eq.~17! while the first is given by

]w

]t
2wÃ~“Ãv!1

“p

%0
1“@w"v#50. ~19!

Using vector algebra, the left-hand side of this equation
be written as a left-hand side of Eq.~18! plus an extra term
vÃ(“Ãw). Equations~10! and ~12! from Ref. 3 were ob-
tained using several assumptions that were not employe
the present paper when deriving Eqs.~17! and ~18!: ]v/]t
5]%/]t5“%50, c is constant, and]w/]t@vÃ(“Ãw). It
follows from the last inequality that the ‘‘extra’’ term
vÃ(“Ãw) in Eq. ~19! can actually be omitted. Note that i
Ref. 4 different starting equations were used in simulatio
of sound propagation in a muffler with a low Mach numb
flow. The use of Eq.~19! resulted in increase of stability in
such simulations.

Also note that equations forp andw similar to Eqs.~17!
and ~18! are used in aeroacoustics, e.g. Refs. 20, 24.
left-hand sides of Eqs.~7! in Ref. 20 contain several extr
terms in comparison with the left-hand sides of Eqs.~17! and
~18! which, however, vanish if“P50 and“"v50. The left-
hand sides of Eqs.~75! and~76! in Ref. 24 also contain extra
terms in comparison with the left-hand sides of Eqs.~17! and
~18!, e.g., terms proportional to the gradients ofc and%. The
right-hand sides of the equations in Refs. 20, 24 desc
aeroacoustic sources and differ from those in Eqs.~17! and
~18!.

At the beginning of this section, we provided sufficie
conditions for the applicability of Eqs.~17! and ~18!. Actu-
ally, the range of applicability of these equations can
much wider. Note that it is quite difficult to estimate wit
what accuracy one can ignore certain terms in differen
equations. We will study the range of applicability of Eq
~17! and ~18! by comparing them with equations for th
sound pressurep presented in Secs. IV B–IV F, which hav
been most often used for analytical and numerical studie
sound propagation in moving media and whose ranges
applicability are well known. This will allow us to show tha
Eqs.~17! and ~18! have the same of a wider range of app
cability than these equations forp and, in many cases, de
scribe sound propagation to any order inv/c. For simplicity,
in the rest of this section, we assume thatF50, Q50, and
the medium velocity is subsonic.

B. Nonmoving medium

Consider the case of a nonmoving medium whenv50.
In this case, the set of linearized equations of fluid dynam
Eqs. ~5!–~8!, can be exactly~without any approximations!
reduced to a single equation for sound pressurep ~e.g., see
Eq. ~1.11! from Ref. 11!:
Ostashev et al.: Moving media finite difference time domain equations
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]t S 1

%c2

]p

]t D2“•S“p

% D50. ~20!

For the considered case of a nonmoving medium, E
~17! and~18! can also be reduced to a single equation forp.
This equation coincides with Eq.~20!. Therefore, Eqs.~17!
and ~18! describe sound propagation exactly ifv50.

C. Homogeneous uniformly moving medium

A medium is homogeneous and uniformly moving if th
ambient quantitiesc, v, etc. do not depend onR and t. For
such a medium, the linearized equations of fluid dynam
Eqs.~5!–~8! can also be exactly reduced to a single equat
for p ~see Sec. 2.3.6 from Ref. 9 and references therein!:

S ]

]t
1v"“ D 2

p2c2¹2p50. ~21!

For the case of a homogeneous uniformly moving m
dium, Eqs.~17! and ~18! can be reduced to the equation f
p that coincides with Eq.~21!. Therefore, Eqs.~17! and~18!
describe sound propagation exactly in a homogeneous
formly moving medium. In particular, they correctly accou
for terms of any order inv/c.

D. Stratified moving medium

Now let us consider the case of a stratified medi
when the ambient quantitiesc, %, v, etc. depend only on the
vertical coordinatez. We will assume that the vertical com
ponent of v is zero: v5(v',0), wherev' is a horizontal
component of the medium velocity vector. In this subsecti
we reduce Eqs.~17! and ~18! to a single equation for the
spectral density of the sound pressure and show that
equation coincides with the equation for the spectral den
that can be derived from Eqs.~5!–~8!.

For a stratified moving medium, Eq.~17! can be written
as

S ]

]t
1v'•“'D p1%c2S“'•w'1

]wz

]z D50. ~22!

Here,“'5(]/]x,]/]y), and w' and wz are the horizontal
and vertical components of the vectorw5(w' ,wz). Equa-
tion ~18! can be written as two equations:

S ]

]t
1v'•“'Dwz1

1

%

]p

]z
50, ~23!

S ]

]t
1v'•“'Dw'1wzv'8 1

“'p

%
50. ~24!

Here,v'8 5dv' /dz. Let p, w' , andwz be expressed as Fou
rier integrals:

p~r ,z,t !5E E daE dv exp~ ia"r2 ivt !p̂~a,z,v!,

~25!

wz~r ,z,t !5E E daE dv exp~ ia"r2 ivt !ŵz~a,z,v!,

~26!
J. Acoust. Soc. Am., Vol. 117, No. 2, February 2005 Ostashe
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w'~r ,z,t !5E E daE dv exp~ ia"r2 ivt !ŵ'~a,z,v!.

~27!

Here,r5(x,y) are the horizontal coordinates,a is the hori-
zontal component of the wave vector,v is the frequency of a
sound wave, andp̂, ŵz , andŵ' are the spectral densities o
p, wz , andw' . We substitute Eqs.~25!–~27! into Eqs.~22!–
~24!. As a result, we obtain a set of equations forp̂, ŵz , and
ŵ' :

2 i ~v2a"v'! p̂1 i%c2a"ŵ'1%c2
]ŵz

]z
50, ~28!

2 i ~v2a"v'!ŵz1
1

%

] p̂

]z
50, ~29!

2 i ~v2a"v'!ŵ'1v'8 ŵz1
iap̂

%
50. ~30!

After some algebra, this set of equations can be reduced
single equation forp̂:

]2p̂

]z2 1S 2a"v'8

v2a"v'

2
%8

%
D ] p̂

]z
1S ~v2a"v'!2

c2 2a2D p̂50,

~31!

where%85d%/dz.
For the considered case of a stratified moving medium

single equation forp̂ can also be derived from Eqs.~5!–~8!
without any approximations. This equation forp is given by
Eq. ~2.61! from Ref. 9. Settingg50 in this equation~i.e.
ignoring internal gravity waves! one obtains Eq.~31!. There-
fore, Eqs.~17! and ~18! describe sound propagation exact
in a stratified moving medium, and, hence, correctly acco
for terms of any order inv/c.

E. Turbulent medium

Probably the most general of the equations describ
the propagation of a monochromatic sound wave in turbu
media with temperature and velocity fluctuations is given
Eq. ~6.1! from Ref. 9:

FD1k0
2~11«!2S“ ln

%

%0
D •“2

2i

v

]v i

]xj

]2

]xi]xj

1
2ik0

c0
v"“Gp~R!50. ~32!

Here, D5]2/]x21]2/]y21]2/]z2; «5c0
2/c221; k0 , c0 ,

and %0 are the reference values of the wave number, ad
batic sound speed, and density;x1 , x2 , x3 stand forx, y, z;
v15vx , v25vy , v35vz are the components of the mediu
velocity vectorv; and repeated subscripts are summed fr
1 to 3. Furthermore, the dependence of the sound pressu
the time factor exp(2ivt) is omitted.

The range of applicability of Eq.~32! is considered in
detail in Sec. 2.3 from Ref. 9. This equation was used
calculations of the sound scattering cross section per
volume of a sound wave propagating in a turbulent medi
with temperature and velocity fluctuations. Also it was e
ployed as a starting equation for developing a theory of m
507v et al.: Moving media finite difference time domain equations
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tiple scattering of a sound wave propagating in such a tur
lent medium; see Ref. 9 and references therein. Furtherm
starting from Eq.~32!, parabolic and wide-angle parabol
equations were derived and used in analytical and nume
studies of sound propagation in a turbulent medium, e
Ref. 26. For example, a parabolic equation deduced from
~32! reads as

2ik0

]p

]x
1D'p12k0

2S 11
«mov

2 D p50. ~33!

Here, the predominant direction of sound propagation co
cides with thex-axis, D'5(]2/]y2,]2/]z2), and «mov5«
22vx /c0 .

In Ref. 9, Eq.~32! was derived starting from the set o
Eqs. ~17! and ~18! and using some approximations. Ther
fore, this set has the same or a wider range of applicab
than equations forp that have been used in the literature f
analytical and numerical studies of sound propagation i
turbulent medium with temperature and velocity fluctuatio

F. Geometrical acoustics

Sound propagation in a moving inhomogeneous med
is often described in geometrical acoustics approxima
which is applicable if the sound wavelength is much sma
than the scale of medium inhomogeneities. In geometr
acoustics, the phase of a sound wave can be obtained
solution of the eikonal equation, and its amplitude from t
transport equation. In this subsection, starting from Eqs.~17!
and ~18!, we derive eikonal and transport equations a
show that they are in agreement with those deduced f
Eqs.~5!–~8!.

Let us expressp andw in the following form:

p~R,t !5exp„ik0Q~R,t !…pA~R,t !, ~34!

w~R,t !5exp„ik0Q~R,t !…wA~R,t !. ~35!

Here,Q(R,t) is the phase function, andpA andwA are the
amplitudes ofp andw. Substituting Eqs.~34! and ~35! into
Eqs.~17! and ~18!, we have

ik0S %c2wA•“Q1pA

dQ

dt D52
dpA

dt
2%c2

“"wA , ~36!

ik0S wA

dQ

dt
1

pA“Q

% D52
dwA

dt
2~wA•“ !v2

“pA

%
.

~37!

In geometrical acoustics,pA andwA are expressed as a seri
in a small parameter proportional to 1/k0 :

pA5p11
p2

ik0
1

p3

~ ik0!2 1 . . . , ~38!

wA5w11
w2

ik0
1

w3

~ ik0!2 1 . . . . ~39!

Substituting Eqs.~38! and ~39! into Eqs.~36! and ~37! and
equating terms proportional tok0 , we arrive at a set of equa
tions:
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%c2w1•“Q1p1

dQ

dt
50, ~40!

w1

dQ

dt
1p1

“Q

%
50. ~41!

Equating terms proportional tok0
0, we obtain another set:

%c2w2•“Q1p2

dQ

dt
52

dp1

dt
2%c2

“"w1 , ~42!

w2

dQ

dt
1

p2“Q

%
52

dw1

dt
2~w1•“ !v2

“p1

%
. ~43!

From Eq.~41!, we have

w152
p1

%

“Q

dQ/dt
. ~44!

Substituting this value ofw1 into Eq. ~40!, we obtain

F S dQ

dt D 2

2c2~“Q!2Gp150. ~45!

From this equation, we obtain an eikonal equation for
phase function:

dQ

dt
52cu“Qu. ~46!

Here, a sign in front ofu“Qu is chosen in accordance with th
time convention exp(2ivt). Equation~46! coincides exactly
with the eikonal equation for sound waves in a moving
homogeneous medium~e.g., see Eq.~3.15! from Ref. 9!
which can be derived from Eqs.~5!–~8! in a geometrical
acoustics approximation. Thus, in this approximation, E
~17! and ~18! exactly describe the phase of a sound wa
and, hence, account for terms of any order inv/c.

Substituting the value ofdQ/dt from Eq. ~46! into Eq.
~44!, we have

w15
p1

%

“Q

cu“Qu
5

p1n

%c
, ~47!

wheren5 “Q/u“Qu is the unit vector normal to the phas
front. Now we multiply Eq.~42! by dQ/dt and multiply Eq.
~43! by c2%“Q. Then, we subtract the latter equation fro
the former. After some algebra and using Eq.~46!, it can be
shown that the sum of all terms proportional top2 andw2 is
zero. The resulting equation reads as

dp1

dt
1cn"“p11%cn•

dw1

dt
1%cn•~w1•“ !v

1%c2
“"w150. ~48!

In this equation,w1 is replaced by its value given by Eq
~47!. As a result, we obtain

%n

c
•

d

dt S np1

%c D1
1

c2

dp1

dt
1

n"“p1

c
1%“•S np1

%c D
1

p1n•~n"“ !v

c2 50. ~49!
Ostashev et al.: Moving media finite difference time domain equations
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In geometrical acoustics, the amplitudepA of the sound pres-
sure is approximated byp1 . Equation~49! is a closed equa
tion for p1 ; i.e., it is a transport equation.

The second term on the left-hand side of Eq.~49! can be
written as

1

c2

dp1

dt
5

d

dt S p1

c2D1
p1

c4

dc2

dt
5

d

dt S p1

c2D1
p1

c4

bd%

dt
. ~50!

Here, we used the formuladc2/dt5bd%/dt; see Eq.~2.63!
from Ref. 9. According to Eq.~2!, d%/dt in Eq. ~50! can be
replaced with2%“"v. When deriving Eqs.~17! and ~18!,
terms proportional to“"v were ignored. Therefore, the la
term on the right-hand side of Eq.~50! should also be ig-
nored. In this case, Eq.~49! can be written as

%n

c
•

d

dt S np1

%c D1
d

dt S p1

c2D1
n"“p1

c
1%“•S np1

%c D
1

p1n•~n"“ !v

c2 50. ~51!

This equation coincides with Eq.~3.18! from Ref. 9 if in the
latter equation terms proportional to“"v are ignored. Equa-
tion ~3.18! is an exact transport equation forp1 in the geo-
metrical acoustics derived from Eqs.~5!–~8!. Thus, if the
terms proportional to“"v are ignored, Eqs.~17! and ~18!
exactly describe the amplitude of a sound wave in a g
metrical acoustics approximation, and correctly account
terms of any order inv/c. Note that in Ref. 9 starting from
the transport equation, Eq.~3.18!, a law of acoustic energy
conservation in geometrical acoustics of moving media
derived; see Eq.~3.21! from that reference. Since Eq.~51!
coincides with Eq.~3.18!, the same law@i.e., Eq.~3.21! from
Ref. 9# can be derived from Eq.~51! provided that the terms
proportional to“"v are ignored.

G. Discussion

Thus, by comparing a set of Eqs.~17! and~18! with the
equations forp which are widely used in atmospheric acou
tics, we determined that this set has the same or a w
range of applicability than these equations forp. Note that
there are other equations forp known in the literature~see
Refs. 9, 11, 17 and references therein!: Monin’s equation,
Pierce’s equations, equation for the velocity quasi-poten
the Andreev–Rusakov–Blokhintzev equation, etc. Most
these equations have narrower ranges of applicability t
the equations presented above and have been seldom
for calculations ofp.

V. NUMERICAL IMPLEMENTATION

In this section, we describe simple algorithms for FDT
solutions of Eqs.~17! and~18! in the two spatial dimension
x andy. Isolating the partial derivatives with respect to tim
on the left side of these equations, we have

]p

]t
52S vx

]

]x
1vy

]

]yD p2kS ]wx

]x
1

]wy

]y D1kQ, ~52!
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]wx

]t
52S wx

]

]x
1wy

]

]yD vx2S vx

]

]x
1vy

]

]yDwx

2b
]p

]x
1bFx , ~53!

]wy

]t
52S wx

]

]x
1wy

]

]yD vy2S vx

]

]x
1vy

]

]yDwy

2b
]p

]y
1bFy , ~54!

whereb51/r is the mass buoyancy andk5rc2 is the adia-
batic bulk modulus. In Eqs.~52!–~54!, the subscriptsx andy
indicate components along the corresponding coordin
axes.

The primary numerical issues pertinent to solving the
equations in a moving inhomogeneous medium are sum
rized and addressed in Secs. V A–V C. Example calculati
are provided in Secs. V D and V E.

A. Spatial finite-difference approximations

The spatial finite-difference~FD! network considered
here stores the pressure and particle velocities on a grid
is staggered in space, as shown in Fig. 1. The pressur
stored at integer node positions, namelyx5 i Dx and y
5 j Dy, wherei and j are integers andDx and Dy are the
grid intervals in thex- and y-directions. Thex-components
of the acoustic velocity,wx , are staggered~offset! by Dx/2
in the x-direction. They-components of the acoustic veloc
ity, wy , are staggered byDy/2 in they-direction. This stag-
gered grid design is widely used for wave propagation c
culations in nonmoving media.27–30 Here we furthermore
storevx and Fx at thewx nodes, andvy and Fy at thewy

nodes. The quantitiesb, k, andQ are stored at the pressur
nodes.

For simplicity, we consider in this article only a secon
order accurate, spatially centered FD scheme. A centered
lution of Eqs.~52!–~54! requires an evaluation of each of th
terms of the right-hand sides of these equations at the
nodes where the field variable on the left-hand side is sto
One of the main motivations for using the spatially stagge

FIG. 1. Spatially staggered finite-difference grid used for the calculation
this article.
509v et al.: Moving media finite difference time domain equations
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grid is that it conveniently provides compact, centered spa
differences for many of the derivatives in Eqs.~52!–~54!.
For example,]wx /]x in Eq. ~52! is

]wx~ i Dx, j Dy,t !/]x.$wx@~ i 11/2!Dx, j Dy,t#

2wx@~ i 21/2!Dx, j Dy,t#%/Dx ~55!

and]p/]y in Eq. ~54! is

]p@ i Dx,~ j 11/2!Dy,t#/]y

.$p@ i Dx,~ j 11!Dy,t#2p@ i Dx, j Dy,t#%/Dy. ~56!

The derivatives]p/]x and ]wy /]y follow similarly. The
body source terms can all be evaluated directly, since t
are already stored at the grid nodes where the FD appr
mations are centered. The same is true ofk, which is stored
at the pressure grid nodes and needed in Eq.~52!. Regarding
Eqs.~53! and~54!, the values forb can be determined at th
needed locations by averaging neighboring grid points.

The implementation of the remaining terms, particular
the moving medium, is somewhat more complicated.
example, the derivatives of the pressure field in Eq.~52!,
]p/]x and ]p/]y, cannot be centered atx5 i Dx and y
5 j Dy from approximations across a single grid interv
Centered approximations can be formed across two grid
tervals, however, as suggested in Ref. 2. For example,

]p~ i Dx, j Dy,t !/]x

.$p@~ i 11!Dx, j Dy,t#2p@~ i 21!Dx, j Dy,t#%/2Dx.

~57!

Neighboring grid points can be averaged to find the w
velocity componentsvx and vy at x5 i Dx and y5 j Dy,
which multiply the derivatives]p/]x and ]p/]y, respec-
tively, in Eq. ~52!. Similarly, the spatial derivatives of th
particle velocities in Eqs.~53! and~54! can be approximated
over two grid intervals. In Eq.~53!, the quantitieswy andvy

~multiplying the derivatives]vx /]y and ]wx /]y, respec-
tively! are needed at the grid pointx5( i 11/2)Dx and y
5 j Dy. Referring to Fig. 1, a reasonable way to obtain the
quantities would be to average the four closest grid node

wy@~ i 11/2!Dx, j Dy,t#

.
1

4
$wy@~ i 11!Dx,~ j 11/2!Dy,t#

1wy@ i Dx,~ j 11/2!Dy,t#

1wy@~ i 11!Dx,~ j 21/2!Dy,t#

1wy@ i Dx,~ j 21/2!Dy,t#%, ~58!

and likewise forvy . The quantitieswx andvx , multiplying
the derivatives]vy /]x and]wy /]x in Eq. ~54!, can be ob-
tained similarly.

B. Advancing the solution in time

Let us define the functionsf p , f x , and f y as the right-
hand sides of Eqs.~52!, ~53!, and ~54!, respectively. For
example, we write
510 J. Acoust. Soc. Am., Vol. 117, No. 2, February 2005
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]p~ i Dx, j Dy,t !

]t

5 f p@ i Dx, j Dy,p~ t !,wx~ t !,wy~ t !,s~ t !#, ~59!

where p(t), wx(t), and wy(t) are matrices containing th
pressures and acoustic velocities at all available grid no
For convenience,s(t) is used here as short hand for the co
bined source and medium properties (b, k, vx , vy , Q, Fx ,
and Fy) at all available grid nodes. ~Note that
f p@ i Dx, j Dy,p(t),wx(t),wy(t),s(t)# in actuality depends
only on the fields at a small number of neighboring g
points of (i Dx, j Dy) when second-order spatial differencin
is used. The notation here is general enough, though, to
commodate spatial differencing of an arbitrarily high orde!

For a nonmoving medium, the solution is typically a
vanced in time using a staggered temporal grid, in which
pressures are stored at the integer time stepst5 l Dt and the
particle velocities at the half-integer time stepst5( l
11/2)Dt.27–30 The acoustic velocities and pressures are
dated in an alternating ‘‘leap-frog’’ fashion, with the field
from the previous time step being overwritten in place. Co
sidering the moving media equations, approximation of
time derivative in Eq.~59! with a finite difference centered
on t5( l 11/2)Dt ~that is, ]p@ i Dx, j Dy,(l 11/2)Dt#/]t
.$p@ i Dx, j Dy,(l 11)Dt#2p@ i Dx, j Dy,l Dt#%/Dt) results
in the following equation for updating the pressure field:

p@ i Dx, j Dy,~ l 11!Dt#

5p@ i Dx, j Dy,l Dt#1Dt f p†i Dx, j Dy,p@~ l 11/2!Dt#,

wx@~ l 11/2!Dt#,wy@~ l 11/2!Dt#,s@~ l 11/2!Dt#‡.

~60!

Note that this equation requires the pressure field at the h
integer time steps, i.e.,t5( l 11/2)Dt. In the staggered leap
frog scheme, however, the pressure is unavailable at the
integer time steps. A similar centered approximation for
acoustic velocities indicates that they are needed on the
teger time steps in order to advance the solution, which
again problematic. If one attempts to address this problem
linearly interpolating between adjacent time steps~i.e., by
setting p@( l 11/2)Dt#.$p@ l Dt#1p@( l 11)Dt#%/2 in Eq.
~60!!, explicit updating equations~a solution of Eq.~60! for
p@ i Dx, j Dy,(l 11)Dt# that does not require the pressu
field at nearby grid points at the time stept5( l 11)Dt) can-
not be obtained. Hence the customary staggered leap-
approach does not lead to an explicit updating scheme for
acoustic fields in a moving medium. The staggered leap-f
scheme can be rigorously implemented only when the te
particular to the moving medium~those involvingvx andvy)
are removed from Eqs.~52!–~54!.

A possible work-around would be to use the press
field p( l Dt) in place ofp@( l 11/2)Dt# when evaluatingf p ,
and wx@( l 21/2)Dt# and wy@( l 21/2)Dt# in place of
wx( l Dt) andwy( l Dt) when evaluatingf x and f y . This non-
rigorous procedure uses the Euler~forward difference!
method to evaluate the moving-media terms while mainta
ing the leap-frog approach for the remaining terms. From
programming standpoint, the algorithm proceeds in ess
Ostashev et al.: Moving media finite difference time domain equations
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tially the same manner as the staggered leap-frog metho
a nonmoving medium. The calculations in Ref. 2 appea
use such a procedure. But the stability and accuracy of
algorithm are unclear. An alternative is provided in Ref.
which uses a perturbative solution based on the assump
that the flow velocity is small.

Here we would like to develop a general technique t
is applicable to high Mach numbers. The simplest way
accomplish this is to abandon the staggered temporal
and form centered finite differences overtwo time steps.
The pressure updating equation, based on the approxima
]p( i Dx, j Dy, l Dt)/]t.$p@ i Dx, j Dy,(l 11)Dt]
2p@ i Dx, j Dy,(l 21)Dt] %/2Dt, is

p@ i Dx, j Dy,~ l 11!Dt#

5p@ i Dx, j Dy,~ l 21!Dt#

12 Dt f p@ i Dx, j Dy,p~ l Dt !,wx~ l Dt !,

wy~ l Dt !,s~ l Dt !#. ~61!

Similarly, we derive

wx@~ i 11/2!Dx, j Dy,~ l 11!Dt#

5wx@~ i 11/2!Dx, j Dy,~ l 21!Dt#12 Dt f x@~ i

11/2!Dx, j Dy,p~ l Dt !,wx~ l Dt !,wy~ l Dt !,s~ l Dt !#,

~62!

wy@ i Dx,~ j 11/2!Dy,~ l 11!Dt#

5wy@ i Dx,~ j 11/2!Dy,~ l 21!Dt#

12 Dt f y@ i Dx,~ j 11/2!Dy,p~ l Dt !,wx

~ l Dt !,wy~ l Dt !,s~ l Dt !#. ~63!

Somewhat confusingly, this general temporal updat
scheme has also been called the ‘‘leap-frog’’ scheme in
literature,31 since it involves alternately overwriting th
wavefield variables at even and odd integer time steps b
on calculations with the fields at the intervening time st
We call this scheme here thenonstaggered leap-frog. The
primary disadvantage, in comparison to the staggered le
frog scheme, is that the fields must be stored over two t
steps, rather than just one. Additionally, the numerical d
persion and instability characteristics are inferior to those
the conventional staggered scheme due to the advance
of the wavefield variables over two time steps instead of o
On the other hand, the nonstaggered leap-frog does prov
simple and rigorous centered finite-difference scheme tha
not specialized to low Mach number flows. Other comm
numerical integration methods, such as the Runge–K
family, can also be readily applied to the nonstaggered
time grid. Some of the calculations following later in th
section use a fourth-order Runge–Kutta method, which
described in Ref. 32 and many other texts. We have a
developed a staggered-in-time method that is valid for h
Mach numbers but requires the fields to be stored over
time levels. This method was briefly discussed in Ref. 6.

Note that our present numerical modeling efforts are
rected toward demonstrating the applicability and feasibi
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of FDTD techniques for simulating sound propagation in
moving atmosphere. We have not undertaken a compre
sive comparative analysis of the many alternative numer
strategies available for the solution of Eqs.~17! and ~18!.
However, several of these approaches~including the pseu-
dospectral method, higher-order spatial and/or tempo
finite-difference operators, and the dispersion relation p
serving ~DRP! technique! yield accurate simulations o
sound propagation with fewer grid intervals per wavelen
compared with our numerical examples. In particular,
DRP method, involving optimized numerical values of t
finite-difference operator coefficients~e.g., Ref. 18!, can be
readily introduced into our FDTD algorithmic framework.

C. Dependence of grid increments on Mach number

For numerical stability of the 2-D FDTD calculation, th
time stepDt and grid spacingDr must be chosen to satisf
the Courant condition,C,1/& ~e.g., see Ref. 33!, where the
Courant number is defined as

C5
u Dt

Dr
. ~64!

Here,u is the speed at which the sound energy propaga
@For a nonuniform grid,Dr 51/A(Dx)221(Dy)22.] Since
the grid spacing must generally be a small fraction o
wavelength for good numerical accuracy, the Courant con
tion in practice imposes a limitation on the maximum tim
step possible for stable calculations. An even smaller ti
step may be necessary for good accuracy, however.

Let us consider the implications of the Courant con
tion for propagation in a uniform flow. In this case,u is
determined by a combination of the sound speed and w
velocity. In the downwind direction, we haveu5u15c
1v. In the upwind direction,u5u25c2v. The wave-
lengths in these two directions arel15(c1v)/ f and l2

5(c2v)/ f , respectively, wheref is the frequency. Since the
wavelength is shortest in theupwinddirection, the value of
l2 dictates the grid spacing. We set

Dr 5
l2

N
5

l

N
~12M !, ~65!

whereN is the number of grid points per wavelength in th
upwind direction,M5v/c is the Mach number, andl5c/ f
is the wavelength for the medium at rest. IfN is to be fixed
at a constant value, a finer grid is required asM increases.
Regarding the time step, the Courant condition implies

Dt,
l2

Nu
. ~66!

This condition is most difficult to meet whenu is largest,
which is the case in thedownwinddirection. Therefore we
must useu1 in the preceding inequality if we are to hav
accurate results throughout the domain; specifically, we m
set

Dt,
l2

Nu1
5

1

N f

12M

11M
. ~67!
511v et al.: Moving media finite difference time domain equations
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. 4.
Therefore the time step must also be shortened asM in-
creases. For example, the time step atM51/3 must be 1/2
the value necessary atM50. At M52/3, the time step mus
be 1/5 the value atM50. The reduction of the required tim
step and grid spacing combine to make calculations at la
Mach numbers computationally expensive.

D. Example calculations

In this subsection, we use the developed algorithm
FDTD solutions of Eqs.~52!–~54! to compute the sound
field p in a 2-D homogeneous uniformly moving medium
The geometry of the problem is shown in Fig. 2. A po
monochromatic source is located at the origin of the Ca
sian coordinate systemx,y. The medium velocityv is paral-
lel to thex-axis. We will first obtain an analytical formula fo
p for this geometry.

In a homogeneous uniformly moving medium,c, %, and
v are constant so that“"v50 and“P50. Therefore, Eqs.
~17! and ~18! describe sound propagation exactly for th
case and are valid for an arbitrary value of the Mach num
M . They can be written as

S ]

]t
1v"“ D p1%c2

“"w5%c2Q, ~68!

S ]

]t
1v"“ Dw1

“p

%
50. ~69!

Here,p andw are functions of the coordinatesx, y and time
t, “5(]/]x,]/]y), and the functionQ is given by

Q5
2iA

%v
e2 ivtd~x!d~y!, ~70!

whered is the delta function and the factorA characterizes
the source amplitude. In Eqs.~68! and~69!, for simplicity, it
is assumed thatF50.

Assuming thatv,c, the following solution of Eqs.~68!
and ~69! is obtained in the Appendix:

p~r ,a,M !

5
iA

2~12M2!3/2S H0
(1)~j!2

iM cosa

A12M2 sin2 a
H1

(1)~j!D
3expF2

ikMr cosa

12M2 G . ~71!

FIG. 2. The geometry of the problem.
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Here, k5v/c, H0
(1) , and H1

(1) are the Hankel functions,j
5krA12M2 sin2 a/(12M2), andr anda are the polar coor-
dinates shown in Fig. 2. Forkr@1, the Hankel functions can
be approximated by their asymptotics. This results in
desired formula for the sound pressure:

p~r ,a,M !5
A~A12M2 sin2 a2M cosa!

A2pkr~12M2!~12M2 sin2 a!3/4

3expF i ~A12M2 sin2 a2M cosa!kr

12M2 1
ip

4 G .
~72!

Note that a sound field due to a point monochromatic sou
in a 2-D homogeneous uniformly moving medium was a
studied in Ref. 18 by a different approach. The phase fa
obtained in that reference is essentially the same as tha
Eq. ~72!. Only a general expression for the amplitude fac
was presented in Ref. 18 which does not allow a deta
comparison with the amplitude factor in Eq.~72!.

Let us now consider the FDTD calculations of the sou
field for the geometry in Fig. 2. In these calculations, t
source consists of a finite-duration harmonic signal with
cosine taper function applied at the beginning and the e
The tapering alleviates numerical dispersion of high frequ
cies, which becomes evident when there is an abrupt cha
in the source emission. The tapered source equation is

Q̃~ t !55
~1/2!@12cos~pt/T1!#cos~2p f 1f!,

0<t,T1 ,

cos~2p f 1f!, T1<t<T2T2 ,

~1/2!@11cos~p~ t2T!/T2!#cos~2p f 1f!,

T2T2,t<T,

0, otherwise.

~73!

Here,f is the source phase,T1 is the duration of the initia-
tion taper, andT2 is the duration of the termination taper. A
calculations in this paper use tapering over an interval o
periods in the harmonic wave (T15T253/f ) and a total
signal duration of 10 periods (T510/f ).

Figure 3 shows the pressure field for a 100 Hz source
a uniform Mach 0.3 flow. The field is shown at 0.11 s,
0.01 s after the source has been turned off. The dista
between wave fronts is smaller upwind than downwind. T
calculations use the fourth-order Runge–Kutta method w
a staggered spatial grid and a nonstaggered temporal
The spatial domain is 100 m by 100 m, with 800 grid poin
in each direction. This results in approximately 19 gr
points per wavelength in the upwind direction. The time s
was set to 0.145 ms, which implies a Courant number of 0
in a nonmoving medium but 0.52 in the downwind directio
of the M50.3 flow. Using the run shown in Fig. 3, the az
muthal dependence of the normalized sound pressure ma
tudeup(r ,a,M )/p(r ,0,0)u for values ofkr ranging from 1 to
100 was compared to the theoretical far-field result cal
lated from Eq.~72!. Excellent agreement was found betwe
theoretical predictions and FDTD simulations forkr*10.

The azimuthal dependence ofup(r ,a,M )/p(r ,0,0)u at
kr520 is compared for several numerical methods in Fig
Ostashev et al.: Moving media finite difference time domain equations
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FIG. 3. Wavefronts of the sound pressure due to a po
source located at the pointx50 and y50 for M
50.3. The medium velocity is in the direction of th
x-axis.
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The methods include the staggered~with forward-
differencing of the moving medium terms mentioned in S
V B! and nonstaggered leap-frog approaches and the fou
order Runge–Kutta. The time step for the leap-frog meth
was 0.036 ms~1/4 that used for the Runge–Kutta!, so that
the computational times of all calculations are roughly equ
The Runge–Kutta and nonstaggered leap-frog prov
graphically indistinguishable results. The staggered le
frog, however, systematically underpredicts the amplitude
the downwind direction and overpredicts in the upwind
rection. The actual sound pressure signals att50.11 s, cal-
culated from the staggered and nonstaggered leap-frog
proaches, are overlaid in Fig. 5. In the downwind directio
the staggered leap-frog method provides a smooth predic
at distances greater than about 22 m. The noisy appearan
shorter distances is due to numerical instability, which w
clear from the rapid temporal growth of these features
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observed as the calculation progressed. We conclude tha
staggered leap-frog approach, when applied to a moving
dium, is less accurate and more prone to numerical insta
ity. This is likely due to the nonsymmetric temporal fini
difference approximations for the moving medium terms.

Figure 6 shows the azimuthal dependence
up(r ,a,M )/p(r ,0,0)u for M50, 0.3, and 0.6. All FDTD cal-
culations for this figure use the fourth-order Runge–Ku
method. Two calculated curves are shown: one for a lo
resolution run with 8003800 grid points and a time step o
0.145 ms, and the other for a high-resolution run with 16
31600 grid points and a time step of 0.0362 ms. ForM
50.3, both grid resolutions yield nearly exact agreem
with Eq. ~72!. At M50.6, the low-resolution run has 1
spatial grid nodes per wavelength in the upwind direct
and a downwind Courant number of 0.64. The hig
resolution grid has 22 spatial grid nodes per wavelength
e

ed
tta
ag-
hi-
FIG. 4. Normalized sound pressure amplitud
up(r ,a,M )/p(r ,0,0)u versus the azimuthal anglea for
M50.3 andkr520. The staggered and nonstagger
leap-frog methods and the fourth-order Runge–Ku
are compared to the theoretical solution. The nonst
gered leap-frog and Runge–Kutta methods are grap
cally indistinguishable.
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FIG. 5. Sound pressure traces for~a! downwind and~b!
upwind propagation. Calculations from the stagger
and nonstaggered leap-frog methods are shown~dashed
and solid lines, respectively!.
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the upwind direction and a downwind Courant number
0.32. Agreement with theory atM50.6 is very good for the
high-resolution run. The low-resolution run substantially u
derpredicts the upwind amplitude.

Finally note that it follows from Figs. 4 and 6 that th
sound pressure is largest fora5180°, i.e., in the upwind
direction. This dependence is also evident upon close exa
nation in Fig. 3.

E. Comparison of FDTD and FFP calculations

The computational examples so far in this paper h
been for uniform flows. However, the numerical metho
and equations upon which they are based apply to non
form flows as well. In this section, we consider an exam
calculation for a flow with constant shear. The point sou
and receiver are both located at a height of 20 m and
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frequency is 100 Hz. The computational domain is 200 m
100 m and has 600 by 300 grid points. The time step
7.7331024 s and the fourth-order Runge–Kutta method
used. A rigid boundary condition is applied at the grou
surface (y50 m). An absorbing layer in the upper one-fift
of the simulation domain removes unwanted numerical
flections.~The implementation of the rigid ground bounda
condition and the absorbing layer is described in Ref.
Realistic ground boundary conditions in a FDTD simulati
of sound propagation in the atmosphere are considere
Ref. 35.!

Calculated transmission loss~sound level relative to free
space at 1 m from the source! results are shown in Figs. 7~a!
and 7~b!. The first of these figures is for a zero-wind cond
tion and the second is for a horizontal (x-direction! wind
speed ofv(y)5my, where the gradientm is 1 s21. For Fig.
Ostashev et al.: Moving media finite difference time domain equations
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FIG. 6. Normalized sound pressure amplitud
up(r ,a,M )/p(r ,0,0)u versus the azimuthal anglea for
M50, 0.3, and 0.6. The fourth-order Runge–Kut
method was used. The calculation with 8003800 grid
points had a spatial resolution of 0.125 m and time s
0.145 ms, whereas the 160031600 calculation had a
spatial resolution of 0.0625 m and time step 0.0362 m
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7~a!, the FDTD results are compared with both the ex
solution for a point source above the rigid boundary a
calculations from the FFP developed in Ref. 36. The FD
results are nearly indistinguishable from the exact soluti
The FFP is also in good agreement, although there is s
systematic underprediction of the interference minima, p
ticularly so near the source. This is likely due to the far-fie
approximation inherent to the FFP. For the case with c
stant shear, Fig. 7~b!, the interference pattern is shifted. Th
FDTD and FFP continue to show very similar small discre
ancies near the source. On the basis of the results show
Fig. 7~a!, it is highly likely that the FDTD is more accurate
The FDTD calculations required about 100 times as long
complete as the FFP on a single-processor computer
would be expected, the FFP is more efficient for calculatio
at a limited number of frequencies in a horizontally stratifi
medium.

VI. CONCLUSIONS

In the present paper, we have considered starting e
tions for FDTD simulations of sound propagation in a mo
ing inhomogeneous atmosphere. FDTD techniques can
vide a very accurate description of sound propagation
complex environments.

A most general description of sound propagation in
moving inhomogeneous medium is based on the comp
set of linearized equations of fluid dynamics, Eqs.~5!–~8!.
However, this set is too involved to be effectively employ
in FDTD simulations of outdoor sound propagation. In th
paper, the linearized equations of fluid dynamics were
duced to two simpler sets of equations which can be use
starting equations for FDTD simulations.

The first set of equations contains three coupled eq
tions, Eqs.~5!, ~6!, and~13!, for the sound pressurep, acous-
tic velocity w, and acoustic densityh. This set is an exac
consequence of the linearized equations of fluid dynam
Eqs.~5!–~8!. To solve the first set of equations, one needs
know the following ambient quantities: the adiabatic sou
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speedc, density%, medium velocityv, pressureP, and the
parametersa, b, andh. The atmosphere can be modeled
an ideal gas to a very good accuracy. In this case, the firs
of equations simplifies and is given by Eqs.~5!, ~6!, and~15!.
Now it contains the following ambient quantities:c, %, v,
andP.

The second set of starting equations for FDTD simu
tions contains two coupled equations for the sound pres
p and acoustic velocityw, Eqs. ~17! and ~18!. In order to
solve this set one needs to know a fewer number of
ambient quantities:c, %, andv. Note that namely these am
bient quantities appeared in most of equations for the so
pressurep which have been previously used for analytic
and numerical studies of outdoor sound propagation. T
second set was derived from Eqs.~5!–~8! assuming that
terms proportional to the divergence of the medium veloc
and the gradient of the ambient pressure can be igno
Both these assumptions are reasonable in atmospheric a
tics. To better understand the range of applicability of t
second set, it was compared with equations for the so
pressurep which have been most often used for analytic
and numerical studies of sound propagation in a moving
homogeneous medium. It was shown that the second se
the same or wider range of applicability than these equati
for p. Thus, a relatively simple set of Eqs.~17! and ~18!,
which is however rather general, seems very attractive
starting equations for FDTD simulations.

The numerical algorithms for FDTD solutions of th
second set of equations were developed for the case of a
inhomogeneous moving medium. It was shown that
staggered-in-time grid approach commonly applied to n
moving media cannot be applied directly for the movi
case. However, fairly simple alternatives based
nonstaggered-in-time grids are available. We used the re
ing algorithms to calculate the sound pressure due to a p
source in a homogeneous uniformly moving medium. T
results obtained were found in excellent agreement with a
lytical predictions even for a Mach number as high as 0
515v et al.: Moving media finite difference time domain equations
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Furthermore, using the algorithm developed, we calcula
the sound field due to a point source in a stratified mov
atmosphere. The results obtained are in a good agree
with the FFP solution.

Finally note that Eqs.~17! and ~18! have already been
used as starting equations in FDTD simulations of sou
propagation in 3-D moving media with realistic veloci
fields. The results obtained were published in proceeding
conferences.5–8 These realistic velocity fields include the fo
lowing: kinematic turbulence generated by quasi-wavelet5,6

3-D stratified moving atmosphere,6 and atmospheric turbu
lence generated by large-eddy simulation.7 In Ref. 8, FDTD
simulations were used to numerically study infrasou
propagation in a moving atmosphere over distances of
eral hundred km. The largest run to date incorporated o
1.5 billion nodes and took about 100 hours on 500 Com
EV6 parallel processors.8
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APPENDIX: SOUND FIELD DUE TO A POINT
MONOCHROMATIC SOURCE IN A HOMOGENEOUS
UNIFORMLY MOVING MEDIUM

In this appendix, we derive a formula for the sound pre
sure due to a point monochromatic source located in a
homogeneous uniformly moving medium~see Fig. 2!.

For this geometry, Eqs.~68! and~69! can be reduced to
a single equation for the sound pressure:

S ]

]t
1v"“ D 2

p2c2¹2p5%c2S ]

]t
1v"“ DQ. ~A1!

Here, the source functionQ is given by Eq.~70! and contains
the time factor exp(2ivt). In what follows, this time factor is
omitted. Furthermore, taking into account that the medi
velocity is parallel to thex-axis, Eq.~A1! can be written as

S ]2

]x2 1
]2

]y2 1k212ikM
]

]x
2M2

]2

]x2D p~x,y!

5
2iA

v S iv2v
]

]xD d~x!d~y!. ~A2!

Let

p~x,y!5
2iA

v S iv2v
]

]xDF~x,y!. ~A3!

Substituting this formula into Eq.~A2!, we obtain the follow-
ing equation for the functionF(x,y):

F ]2

]x2 1
]2

]y2 2S 2 ik1M
]

]xD 2GF~x,y!5d~x!d~y!.

~A4!

In this equation, let us make the following transformation

x5A12M2X, k5A12M2K,

F~x,y!5exp~2 iKMX !C~X,y!. ~A5!

As a result, we obtain the following equation for the fuin
tion C(X,y):

F ]2

]X2 1
]2

]y2 1K2GC~X,y!5
1

A12M2
d~X!d~y!. ~A6!

A solution of this equation is well known:

C~X,y!52
i

4A12M2
H0

(1)~KAX21y2!. ~A7!

Using this expression forC and Eqs.~A3! and ~A5!, we
obtain a desired formula for the sound pressure of a p
monochromatic source in a 2-D homogeneous uniform
moving medium:

p~x,y!5
iA

2~12M2!3/2FH0
(1)~j!2

iMkx

j~12M2!
H1

(1)~j!G
3expS 2

ixkM

12M2D . ~A8!

nt
Ostashev et al.: Moving media finite difference time domain equations



ion
m

in
ac

he
cta

u
ni-

.
n
e

.
i

fie

D.
L
o-

an

P.
ed
ov
ng

d

pa

o-

an
to-

v/

m
f

if-

ute
o.

for

eed

ent

on

l in-

st.

v-
as

in

dia

ite-

ther

f

f
and
a-

ion

-
e-

and

,’’
Here, j5 (k/A12M2)Ax2/(12M2) 1y2. In polar coordi-
nates, Eq.~A8! becomes Eq.~71!.
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